- формула для интерполирования назад
- backward interpolation formula
Русско-английский физический словарь. 2013.
Русско-английский физический словарь. 2013.
ГАУССА ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА — формула, использующая в качестве узлов интерполяции ближайшие к точке интерполирования хузлы. Если то формула написанная по узлам наз. формулой Гаусса для интерполирования вперед, а формула написанная по узлам наз. формулой Гаусса для… … Математическая энциклопедия
БЕССЕЛЯ ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА — формула, определяемая как полусумма формулы Гаусса (см. Гаусса интерполяционная формула).для интерполирования вперед по узлам и формулы Гаусса того же порядка для интерполирования назад по отношению к узлу т. е. по совокупности узлов С… … Математическая энциклопедия
Интерполяционная формула Гаусса — формула, использующая в качестве узлов интерполяции ближайшие к точке интерполирования x узлы. Если , то формула написанная по узлам , называется формулой Гаусса для интерполирования вперед, а формула … Википедия
НЬЮТОНА ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА — форма записи Лагранжа интерполяционной формулы, использующая разделенные разности: где разделенные разности k гопорядка; рассматривалась И. Ньютоном (I. Newton, 1687). Формула (1) наз. Н. и. ф. для неравных промежутков. В случае, когда значения… … Математическая энциклопедия
СТИРЛИНГА ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА — полусумма Гаусса интерполяционной формулы для интерполирования вперед по узлам х 0, x0+h, х0 h, . . ., x0+nh, x0 nh в точке x=x0+th и формулы Гаусса того же порядка для интерполирования назад по узлам х 0, х0 h, x0+h , . . ., x0 nh, x0+nh С… … Математическая энциклопедия
Интерполяционные формулы Ньютона — Интерполяционные формулы Ньютона формулы вычислительной математики, применяющиеся для полиномиального интерполирования. Если узлы интерполяции равноотстоящие и упорядочены по величине, так что , то есть , то интерполяционный многочлен можно … Википедия
Интерполяционные формулы — формулы, дающие приближённое выражение функции у = f (x) при помощи интерполяции (См. Интерполяция), т. е. через интерполяционный многочлен Рn(х) степени n, значения которого в заданных точках x0, x1, ..., хn совпадают со значениями y0,… … Большая советская энциклопедия